Abstract

The computation of optimal route for various kinds of automatic or manned vehicles on hilly terrain is an important task in route planning applications. In the absence of a road network, the topography factors of the terrain (slope, elevation, etc.) and the climbing angle of the vehicle play an important role in the computation of the optimal route between two points. This kind of problem has been addressed in the artificial intelligence domain, and the graph search algorithms can be applied to find a solution. The A* algorithm and various versions of A* have been reported in the literature to achieve the faster results while maintaining the optimality criteria of the solution. The speed-up in all the versions of A* algorithms is achieved through the use of heuristic knowledge available in the problem domain. There may exist various heuristic functions that fulfil the admissibility criteria but produce different results as far as the speed and the optimality are concerned. This paper presents a performance measure for quantitative comparison of the various heuristics functions that can be used for optimal route selection in hilly terrain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.