Abstract

Although the plaque assay defines a “gold-standard” for measuring virus infectivity, its reliance on plaque counting limits its sensitivity. When the assay is performed with a liquid overlay, instead of agar overlay, spontaneous flows can promote a uni-directional spread of infection, creating elongated regions of cytopathology that resemble comets. As a model system comet and plaque cultures of vesicular stomatitis virus (VSV) on baby hamster kidney (BHK-21) cells were compared. Host-cell monolayers were infected with VSV particles, incubated 15 h in the presence of liquid or agar overlays and stained. VSV formed significantly larger comets than plaques, consistent with a mechanism of flow-enhanced spread. When antiviral drug (5-fluorouracil) was incorporated into the liquid overlay, comet sizes were reduced in a dose-dependent manner. Images of infected monolayers, acquired using a simple digital scanner, enabled a quantification of the inhibitory effect of the drug on infectivity. The resulting measure of drug susceptibility was found to be 18-fold more sensitive than the IC 50 measure attained by the traditional plaque-reduction assay. This quantitative comet assay has the potential to similarly enhance the sensitivity of infection measures for other plaque-forming viruses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call