Abstract

We establish here a quantitative central limit theorem (in Wasserstein distance) for the Euler–Poincaré characteristic of excursion sets of random spherical eigenfunctions in dimension 2. Our proof is based upon a decomposition of the Euler–Poincaré characteristic into different Wiener-chaos components: we prove that its asymptotic behaviour is dominated by a single term, corresponding to the chaotic component of order two. As a consequence, we show how the asymptotic dependence on the threshold level $u$ is fully degenerate, that is, the Euler–Poincaré characteristic converges to a single random variable times a deterministic function of the threshold. This deterministic function has a zero at the origin, where the variance is thus asymptotically of smaller order. We discuss also a possible unifying framework for the Lipschitz–Killing curvatures of the excursion sets for Gaussian spherical harmonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call