Abstract

AbstractRadiodonta is a clade of stem euarthropods of central importance to our understanding of the evolution of this phylum. Radiodonts include some of the largest early Paleozoic animals; however, little is known about their ontogeny. We present an analysis of molting patterns and ontogeny in the radiodont Stanleycaris based on 265 exceptionally preserved specimens from the mid-Cambrian (Wuliuan) Burgess Shale. Ranging in size from 10 to 83 mm, they constitute the most extensive radiodont ontogenetic series known. Using a novel morphospace approach, we show that putative carcasses and exuviae can be quantitatively distinguished by the particular suites of structures preserved and their modes of preservation. We propose that Stanleycaris, and probably other radiodonts, molted via a suture near the anterior of the trunk. Similar anterior molting strategies, with a suture located at the head–trunk boundary, are shared with some Cambrian euarthropods and are potentially ancestral. Allometric analyses suggest that as Stanleycaris body size increased, the head sclerite and neck became relatively broader, while the trunk and flaps became slightly longer. The eyes developed precociously, indicating an important role of visual processing in juveniles. Finally, we find evidence for an initial anamorphic developmental phase, where segment number increased at least from 11 or 12 up to 17, followed by an epimorphic phase, in which growth continued without segment addition. This is consistent with the hypothesis that finite postembryonic segment addition (hemianamorphosis) is ancestral for arthropods and refines the timing of the origin of this important developmental mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call