Abstract

To optimize performance during vital tasks, animals are capable of tuning rhythmic neural signals that drive repetitive behaviors, such as motor reflexes under constant sensory stimuli. In the oculomotor system, animals track the moving image during slow phases while repetitively resetting the eye position from the eccentricity during quick phases. During optokinetic response (OKR), larval zebrafish occasionally show a delayed quick phase; thus, the eyes remain tonically deviated from the center. In this study, we scrutinized OKR in larval zebrafish under a broad range of stimulus velocities to determine the parametric property of the quick-phase delay. A prolonged stimulation revealed that the slow-phase (SP) duration-the interval between two quick phases-was tuned increasingly over time toward a homeostatic range, regardless of stimulus velocity. Attributed to this rhythm control, larval zebrafish exhibited a tonic eye deviation following slow phases, which was especially pronounced when tracking a fast stimulus over an extended time period. In addition to the SP duration, the fixation duration between spontaneous saccades in darkness also revealed a similar adaptive property after the prolonged optokinetic stimulation. Our results provide a quantitative description of the adaptation of rhythmic eye movements in developing animals and pave the way for potential animal models for eye movement disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.