Abstract

There is a lack of information on (i) the potential fire load of new green-technology vehicles, (ii) flame spread behavior, (iii) thermal impacts on high-pressure hydrogen storage vessels (HSVs) and lithium-ion batteries (LIBs) during fuel cell electric vehicles fires (FCEVs), and (iv) thermal damage to adjacent vehicles and upper structural members during FCEV fires occurring in civil structures, such as underground spaces, multi-story parks, and tunnels. In view of this, a full-scale fire test was conducted in this study to quantitatively assess the fire risk of hydrogen FCEVs. Large-scale cone calorimetry was used to quantify the thermal intensity released from the FCEV fire. The flame spreading behavior through an FCEV with HSVs and LIBs was observed using the thermocouples installed. Changes in the temperature and irradiance around the FCEV fire were also measured using an instrumented test rig. The peak heat release rate, total heat released, and fire growth rate were observed to be 5.99 MW, 11.8 GJ, and 0.0055 kW/s², respectively. The temporal point of hydrogen gas release from the HSVs' thermal pressure relief device (TPRD) was estimated to be 16.2-26.2 min. The initiation of thermal runaway of LIBs was deduced from the temperature-time profiles of the LIB modules and their metal housing approximately 22.2 min after HCEV ignition. Moreover, FCEV fires could thermally impair adjacent upper structural members by 800 ℃ combustion gas for at least 13 min and emit a median heat flux of 27.2 kW/m² (peak heat flux of 76.5 kW/m²) to adjacent vehicles. The measurements and findings obtained from this study can contribute to the evaluation of and further studies on newly emerging fire hazards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.