Abstract

Recently, computer architectures that combine a reconfigurable (or retargetable) coprocessor with a general-purpose microprocessor have been proposed. These architectures are designed to exploit large amounts of fine grain parallelism in applications. In this paper, we study the performance of the reconfigurable coprocessors on multimedia applications. We compare a Field Programmable Gate Array (FPGA) based reconfigurable coprocessor with the array processor called REMARC (Reconfigurable Multimedia Array Coprocessor). REMARC uses a 16-bit simple processor that is much larger than a Configurable Logic Block (CLB) of an FPGA. We have developed a simulator, a programming environment, and multimedia application programs to evaluate the performance of the two coprocessor architectures. The simulation results show that REMARC achieves speedups ranging from a factor of 2.3 to 7.3 on these applications. The FPGA coprocessor achieves similar performance improvements. However, the FPGA coprocessor needs more hardware area to achieve the same performance improvement as REMARC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.