Abstract

Quality Control methods (QC-methods) play an important role in the overall control strategy for drug manufacturing. However, efficient life-cycle management and continual improvement are hindered due to a variety of post-approval variation legislations across territories and a lack of harmonization of the requirements. As a result, many QC-methods fall behind the technical development. Developing the QC-method in accordance with the Quality by Design guidelines gives the possibility to do continual improvements inside the original Method Operable Design Region (MODR). However, often it is necessary to do changes outside the MODR, e.g. to incorporate new technology that was not available at the time the original method was development. Here, we present a method enhancement concept which allows minor adjustments, within the same measuring principle, outside the original MODR without interaction with regulatory agencies. The feasibility of the concept is illustrated by a case study of a QC-method based on HPLC, assumed to be developed before the introduction of UHPLC, where the switch from HPLC to UHPLC is necessary as a continual improvement strategy. The concept relies on the assumption that the System Suitability Test (SST) and failure modes are relevant for other conditions outside the MODR as well when the same measuring principle is used. It follows that it should be possible to move outside the MODR as long as the SST has passed. All minor modifications of the original, approved QC-method must be re-validated according to a template given in the original submission and a statistical equivalence should be shown between the original and modified QC-methods. To summarize, revalidation is handled within the pharmaceutical quality control system according to internal change control procedures, but without interaction with regulating agencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.