Abstract

AbstractData mining is a popular research area that has been studied by many researchers and focuses on finding unforeseen and important information in large databases. One of the popular data structures used to represent large heterogeneous data in the field of data mining is graphs. So, graph mining is one of the most popular subdivisions of data mining. Subgraphs that are more frequently encountered than the user-defined threshold in a database are called frequent subgraphs. Frequent subgraphs in a database can give important information about this database. Using this information, data can be classified, clustered and indexed. The purpose of this survey is to examine frequent subgraph mining algorithms (i) in terms of frequent subgraph discovery process phases such as candidate generation and frequency calculation, (ii) categorize the algorithms according to their general attributes such as input type, dynamicity of graphs, result type, algorithmic approach they are based on, algorithmic design and graph representation as well as (iii) to discuss the performance of algorithms in comparison to each other and the challenges faced by the algorithms recently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.