Abstract

External fixators of serious fractures could be an attractive substrate on which microorganisms can accumulate. Therefore, this study aimed to develop a suitable method for enabling the simulation of a real situation when osteosynthetic fixation material is open for the potential threat of bacterial attack. Agar-based media represented human tissue, and the metallic pin characterized the screw in the fixation. Various types of agar, supplements, and contamination strategy by Staphylococcus aureus were tested. The influence of the initial bacterial concentration was also examined. Surfaces were observed by scanning electron microscopy (SEM), and all results were compared. Brain Heart Infusion Agar with the Egg Yolk Tellurite Emulsion was established in a transparent test tube as a suitable system for enabling the good interpretability of bacterial contamination in the pin's surroundings. Pin contamination has been found to be an appropriate approach for testing microbial growth, rather than agar surface contamination, which distorted obtained results. A lower initial colony forming units (CFU) provided better clarity of the test. SEM observation of the pin surface was comparable with the visual evaluations in the test tubes. Results were assembled for positive and negative control samples as well. Screening method for the most common bacteria S. aureus has been standardized and developed. This experimental setup could also be a useful tool for surface modification with antibacterial properties testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.