Abstract

Many earthquakes have been recorded from the coastal margin of the Indian peninsular shield during the last 200 years. Largely made up of Precambrian assemblages with variable cover of Jurassic to Quaternary sedimentary rocks and Cretaceous-Eocene volcanics, the peninsular shield was long held to be aseismic. Recent measurements, however, show that this continental fragment is being pushed northeastward by the Carlsberg and Central Indian ridges; and the Indo-Myanmar subduction zone is exerting vigorous slab pull towards the east. Repeated cycles of sea level change during the Quaternary have also induced continuing hydro-isostatic adjustment due to variable melt water loading in the Bay of Bengal and the Arabian sea. All these forces produce space-time fluctuations of strain around many small to large faults, which occur in the upper crust of the shield. Some of the faults have been intermittently active (during the past 100 kyr); others were active earlier. Although the Shillong plateau and the associated hill ranges of northeastern India and Myanmar are subject to the maximum seismic hazard, the peninsular coast is also vulnerable to intermittent seismicity. We present illustrative evidence of some active faults, which are recognisable (a) on coastal land by displaced Pleistocene weathered cover, hot springs, leakages of native mercury and allochthonous geochemical anomalies of base metals and (b) offshore below the inner shelf by horst-shaped uplifted segments and intra-formational slump folds on and below the top shallow seismic (3.5 kHz) reflector. On the other hand, there are long stretches of the east coast at Vishakhapatnam and Manappad Point, which do not show active faults. Step-like marine terraces, which occur up to+6 m above the low tide level (LTL) preserve records of relative sea level fluctuations during the Holocene and the Last Interglacial. In such sectors, absence of tectonic disturbance during the last 100 ka is also corroborated by lateral continuity of shallow seismic reflectors below the inner shelf over many kilometers. Since authentic historical (200–1000 years B.P.) records of seismicity along the Peninsular coast are virtually unavailable, the likely recurrence interval between earthquakes in each sector cannot be gauged. We, therefore, propose a scale of seismic risk, based on geometry of the mappable faults and available seismic records of the last two centuries. These could be used in combination to rank the densely populated coastal tracts sector-wise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call