Abstract

In this paper the capacitive coupling in quadrature RC-oscillators is investigated. The capacitive coupling has the advantages of being noiseless with a small area penalty and without increasing the power dissipation. The results show that a phase error below 1° and an amplitude mismatch lower than 1% are obtained with a coupling capacitance about 20% of the oscillator׳s capacitance value. Due to this kind of coupling, the phase-noise improves by 3dB (to −115.1 dBc/Hz @ 10MHz) and the increase of power requirement is only marginal leading to a figure-of-merit of −154.8dBc/Hz. This is comparable to the best state-of-the-art RC-oscillators, yet the dissipated power is about four times less. We present calculations of frequency, phase error and amplitude mismatch that are validated by simulations. The theory shows that phase error is proportional to the amplitude mismatch, indicating that an automatic phase error minimization based on the amplitude mismatches is possible. The measurements on a 2.4GHz voltage-controlled quadrature RC-oscillator with capacitive coupling fabricated in 130nm CMOS circuit prototypes validate the theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.