Abstract

A quadrature clock corrector uses relaxation oscillators to detect duty-cycle and quadrature phase errors by transforming them into pairs of frequencies, which are then digitized and compared. It achieves good detection accuracy and can detect a wide range of duty-cycle and quadrature phase errors. The prototype is implemented in a 55-nm CMOS process with a supply voltage of 1.2 V and occupies an area of 0.003 mm2. The experimental results show that the operation range is from 1 to 3 GHz, the power efficiency is 0.79 mW/GHz, the maximum duty-cycle error is 0.8% at 3 GHz, and the maximum quadrature phase error is 1.1° at 3 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.