Abstract
We propose a new QR-like algorithm, symmetric squared QR (SSQR) method, that can be readily parallelized using commonly available parallel computational primitives such as matrix–matrix multiplication and QR decomposition. The algorithm converges quadratically and the quadratic convergence is achieved through a squaring technique without utilizing any kind of shifts. We provide a rigorous convergence analysis of SSQR and derive structures for several of the important quantities generated by the algorithm. We also discuss various practical implementation issues such as stopping criteria and deflation techniques. We demonstrate the convergence behavior of SSQR using several numerical examples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.