Abstract
We propose a class of quadratic optimization problems which can be reformulated by completely positive cone programming with the same optimal values. The objective function can be any quadratic form. The constraints of each problem are described in terms of quadratic forms with no linear terms, and all constraints are homogeneous equalities, except one inhomogeneous equality where a quadratic form is set to be a positive constant. For the equality constraints, “a hierarchy of copositvity” condition is assumed. This model is a generalization of the standard quadratic optimization problem of minimizing a quadratic form over the standard simplex, and covers many of the existing quadratic optimization problems studied for exact copositive cone and completely positive cone programming relaxations. In particular, it generalizes the recent results on quadratic optimization problems by Burer and the set-semidefinite representation by Eichfelder and Povh [Optim. Lett., 7 (2013), pp. 1373--1386].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.