Abstract

This paper presents an optimization strategy to coordinate multiple Autonomous Guided Vehicles (AGVs) on ad-hoc pre-defined roadmaps used in logistic operations in industrial applications. Specifically, the objective is to maximize traffic throughput of AGVs navigating in an automated warehouse by minimizing the time AGVs spend negotiating complex traffic patterns to avoid collisions with other AGVs. In this work, the coordination problem is posed as a Quadratic Programming (QP) problem where the optimization is performed in a centralized manner. The optimality of the coordination strategy is established and the feasibility of the strategy is validated in simulation for different scenarios and for real industrial environments. The performance of the proposed strategy is then compared with a decentralized coordination strategy which relies on local negotiations for shared resources. The results show that the proposed coordination strategy successfully maximizes vehicle throughout and significantly minimizes the time vehicles spend negotiating traffic under different scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.