Abstract

Given an edge-weighted undirected graph G and two prescribed vertices u and v, a next-to-shortest (u,v)-path is a shortest (u,v)-path amongst all (u,v)-paths having length strictly greater than the length of a shortest (u,v)-path. In this paper, we deal with the problem of computing a next-to-shortest (u,v)-path. We propose an ${\mathcal{O}}(n^{2})$ time algorithm for solving this problem, which significantly improves the bound of a previous one in ${\mathcal{O}}(n^{3})$ time where n is the number of vertices in G.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.