Abstract

In this paper, we show that dissipativity and passivity based control combined with event-triggered networked control systems (NCS) provide a powerful platform for designing cyber-physical systems (CPS). We propose QSR-dissipativity, passivity and finite-gain L 2 -stability conditions for an event-triggered NCS in cases where an input-output event-triggering sampler condition is located on the plant's output side, controller's output side, or both sides leading to a considerable decrease in communication load amongst sub-units in NCS. We show that the passivity and stability conditions depend on passivity levels for the plant and controller. Our results also illustrate the trade-off among passivity levels, stable performance, and system's dependence on the rate of communication between the plant and controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.