Abstract

The cardiotoxicity caused by doxorubicin and extravasation injury caused by anthracyclines is reduced by the clinically approved bisdioxopiperazine drug dexrazoxane. Dexrazoxane is a rings-closed analog of EDTA and is hydrolyzed in vivo to a form that strongly binds iron. Its protective effects were originally thought to be due to the ability of its metabolite to remove iron from the iron-doxorubicin complex, thereby preventing oxygen radical damage to cellular components. More recently it has been suggested that dexrazoxane may exert its protective effects by inhibiting topoisomerase IIβ in the heart and inducing a reduction in its protein levels through induction of proteasomal degradation. The ability of dexrazoxane, other bisdioxopiperazines, and mitindomide to protect against doxorubicin-induced damage was determined in primary neonatal rat myocytes. This QSAR study showed that the protection that a series of bisdioxopiperazine analogs of dexrazoxane and the bisimide mitindomide offered against doxorubicin-induced myocyte damage was highly correlated with the ability of these compounds to catalytically inhibit the decatenation activity of topoisomerase II. The structural features of the dexrazoxane analogs that contribute to the binding and inhibition of topoisomerase II have been identified. These results suggest that the inhibition of topoisomerase II in myocytes by dexrazoxane is central to its role in its activity as an anthracycline cardioprotective agent. Additionally, sequence identity analysis of the amino acids surrounding the dexrazoxane binding site showed extremely high identity, not only between both invertebrate topoisomerase II isoforms, but also with yeast topoisomerase II as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call