Abstract

Internet-of-Things (IoT) is an emergent paradigm that is increasingly applied in smart cities. A popular technology used in IoT is LoRa that supports long-range wireless communication. In this research, we study LoRa-based IoT systems with battery-powered end nodes that collect and communicate data to a gateway for further processing. Existing approaches in such IoT systems usually only consider stationary end nodes. We focus on systems with mobile end nodes, paving the way to new applications such as target tracking. Key Quality of Service (QoS) requirements for these settings are the reliability of the communication and energy consumption. With mobile end nodes, ensuring these QoS is challenging as the system is subject to continuous changes. In this paper, we investigate how the settings of a mobile end node impact key performance indicators for reliability and energy consumption. Based on insights obtained from extensive field experiments, we devise an algorithm that automatically adapts the settings of a mobile end node to ensure its QoS requirements for a setup with a single gateway. We then extend the algorithm to a setup with multiple gateways. We demonstrate how the algorithms achieve the QoS requirements of a mobile end node in a concrete IoT deployment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.