Abstract

We present a detailed theoretical study of the electronic absorption spectra and thermochemistry of molecular photoswitches composed of one and two photochromic units of dihydroazulene (DHA)/vinylheptafulvene (VHF) molecules. Six different isomers are considered depending on the ring opening/closure forms of the DHA units. The solvent effect of acetonitrile is investigated using a sequential Molecular Mechanics/Quantum Mechanics approach. The thermochemical investigations of these photochromic molecules were performed using the Free Energy Perturbation method, and the simulations were performed using Configurational Bias Monte Carlo. We show that to open the 5-member ring of the DHA, there is no significant gain in thermal release of energy for the back reaction when a unit or two DHA units are considered. Overall, we found agreement between the solvation free energy based on Monte Carlo simulations and the continuum solvent model. However, the cavitation term in the continuum model is shown to be a source of disagreement when the non-electrostatic terms are compared. The electronic absorption spectra are calculated using TDDFT CAM-B3LYP/cc-pVDZ. Agreement with experiment is obtained within 0.1 eV, considering statistically uncorrelated configurations from the simulations. Inhomogeneous broadening is also considered and found to be well described in all cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.