Abstract

This paper deals with the problem of channel assignment in mobile communication systems. In particular, we propose an alternative approach to solving the dynamic channel assignment (DCA) problem through a form of real-time reinforcement learning known as Q learning. Instead of relying on a known teacher, the system is designed to learn an optimal assignment policy by directly interacting with the mobile communication environment. The performance of the Q-learning-based DCA was examined by extensive simulation studies on a 49-cell mobile communication system under various conditions including homogeneous and inhomogeneous traffic distributions, time-varying traffic patterns, and channel failures. Comparative studies with the fixed channel assignment (FCA) scheme and one of the best dynamic channel assignment strategies (MAXAVAIL) have revealed that the proposed approach is able to perform better than the FCA in various situations and is capable of achieving a similar performance to that achieved by MAXAVAIL, but with a significantly reduced computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.