Abstract
Gully erosion affects the landscape and human life in many ways, including the destruction of agricultural land and infrastructures, altering the hydraulic potential of soils, as well as water availability. Due to climate change, more areas are expected to be affected by gully erosion in the future, threatening especially low-income agricultural regions. In the past decades, quantitative methods have been proposed to simulate and predict gully erosion at different scales. However, gully erosion is still underrepresented in modern GIS-based modeling and simulation approaches. Therefore, this study aims to develop a QGIS plugin using Python to assess gully erosion dynamics. We explain the preparation of the input data, the modeling procedure based on Sidorchuk’s (Sidorchuk A (1999) Dynamic and static models of gully erosion. CATENA 37:401–414.) gully simulation model, and perform a detailed sensitivity analysis of model parameters. The plugin uses topographical data, soil characteristics and discharge information as gully model input. The plugin was tested on a gully network in KwaThunzi, KwaZulu-Natal, South Africa. The results and sensitivity analyses confirm Sidorchuck’s earlier observations that the critical runoff velocity is a main controlling parameter in gully erosion evolution, alongside with the slope stability threshold and the soil erodibility coefficient. The implemented QGIS plugin simplifies the gully model setup, the input parameter preparation as well as the post-processing and visualization of modelling results. The results are provided in different data formats to be visualized with different 3D visualization software tools. This enables a comprehensive gully assessment and the derivation of respective coping and mitigation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.