Abstract
Chan et al. (Integral Transforms Spec. Funct. 12 (2), 139–148, (2001)) constructed a multivariable extension of the Lagrange polynomials, popularly known as the Chan–Chyan–Srivastava polynomials. Altin and Erkuş (Integral Transforms Spec. Funct. 17, 239–244, (2006)) proposed Lagrange–Hermite polynomials in several variables. Erkuş and Srivastava (Integral Transforms Spec. Funct., 17, 267–273, (2006)) presented an unification (and generalization) of the Chan–Chyan–Srivastava polynomials and the multivariable Lagrange–Hermite polynomials, called as Erkuş–Srivastava polynomials. Duman (Taiwanese J. Math. 12 (2), 539‐543, (2008)) defined a ‐analogue of these generalized multivariable polynomials. Inspired by these studies, we construct a linear positive operator by means of the ‐Erkuş–Srivastava multivariable polynomials and study the Korovkin‐type theorems and the rate of convergence of these operators by using summability techniques of weighted ‐statistical convergence and the power series method. We also define a th‐order Taylor generalization of the multivariable polynomials operator and investigate the approximation of th‐order continuously differentiable Lipschitz class elements. Finally, we define the bivariate case of ‐Erkuş–Srivastava multivariable polynomials operator and study its ‐statistical convergence by using four‐dimensional matrix transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.