Abstract
MacMahon's classical theorem on boxed plane partitions states that the generating function of the plane partitions fitting in an a×b×c box is equal toHq(a)Hq(b)Hq(c)Hq(a+b+c)Hq(a+b)Hq(b+c)Hq(c+a), where Hq(n):=[0]q!⋅[1]q!…[n−1]q! and [n]q!:=∏i=1n(1+q+q2+…+qi−1). By viewing a boxed plane partition as a lozenge tiling of a semi-regular hexagon, MacMahon's theorem yields a natural q-enumeration of lozenge tilings of the hexagon. However, such q-enumerations do not appear often in the domain of enumeration of lozenge tilings. In this paper, we consider a new q-enumeration of lozenge tilings of a hexagon with three bowtie-shaped regions removed from three non-consecutive sides.The unweighted version of the result generalizes a problem posed by James Propp on enumeration of lozenge tilings of a hexagon of side-lengths 2n, 2n+3, 2n, 2n+3, 2n, 2n+3 (in cyclic order) with the central unit triangles on the (2n+3)-sides removed. Moreover, our result also implies a q-enumeration of boxed plane partitions with certain constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Advances in Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.