Abstract

An immunosensor is an analytical system consisting of specific immune system molecules coupled to a signal transducer. Immunosensor sensitivity depends on the type of immunorecognition ligands used, immobilization influence on their activity and orientation on the surface. Quartz crystal microbalance with dissipation (QCM-D) was employed to investigate the immobilization of antibodies against bovine leukemia virus antigen gp51 (gp51). Disulphide bridges of antibody hinge region were reduced chemically to yield two half antibody fragments (Frag-Ab), each having a single antigen binding site and free sulfhydryl groups that were used for immobilization. Frag-Ab were immobilized on planar gold and gold nanoparticle (AuNP) modified QCM-D sensor surfaces from initial solutions of different concentrations. Higher Frag-Ab surface density values were obtained on AuNP modified surfaces at all tested antibody concentrations. Frag-Ab/gp51 specific interaction was registered and it was determined that the highest sensitivity was exhibited by Frag-Ab immobilized at the lowest surface desities on both types of investigated surfaces. Specific gp51 interaction with Frag-Ab and non-specific binding to bovine serum albumin modified surfaces were compared by employing Δf/ΔD plots, which could serve as fingerprints of different processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.