Abstract

A node-based design variable implementation for continuum structural topology optimization in a finite element framework is presented and its properties are explored in the context of solving a number of different design examples. Since the implementation ensures C0continuity of design variables, it is immune to element-wise checkerboarding instabilities that are a concern with element-based design variables. Nevertheless, in a subset of design examples considered, especially those involving compliance minimization with coarse meshes, the implementation is found to introduce a new phenomenon that takes the form of “layering” or “islanding” in the material layout design. In the examples studied, this phenomenon disappears with mesh refinement or the enforcement of sufficiently restrictive design perimeter constraints, the latter sometimes being necessary in design problems involving bending to ensure convergence with mesh refinement. Based on its demonstrated performance characteristics, the authors conclude that the proposed node-based implementation is viable for continued usage in continuum topology optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.