Abstract

The location and coordination geometry of vanadium(IV) ions in the cesium salt of molybdovanadophosphoric heteropolyacid Cs(4)PVMo(11)O(40) were studied using orientation-selective pulsed ENDOR (electron nuclear double resonance) experiments. To enhance the orientation selectivity for the paramagnetic vanadyl species, these investigations were done at Q-band frequencies. It was possible to resolve interactions of the paramagnetic vanadyl ions (VO(2+)) with all relevant nuclei, (1)H, (31)P, (51)V, and (133)Cs. The location of the vanadyl species was studied by determination of the complete (31)P hyperfine tensor. This approach was done for both the fresh and the calcined Cs(4)PVMo(11)O(40) materials, and no differences in the structures of the VO(2+) complexes were found. The ENDOR results give experimental evidence for the location of the V(IV) ions. For both samples, it was possible to exclude the incorporation of V(IV) at the Mo sites. The VO(2+) species are directly attached to the outer surface of the heteropolyanion and coordinated to four of the outer oxygen atoms with a V-P distance of 3.96 A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call