Abstract

Crystalline bis(N,N-di-iso-butyldithiocarbamato-S,S′)(pyridine)cadmium(II) – adduct 1 was prepared and studied by means of multinuclear 13C, 15N, 113Cd CP/MAS NMR spectroscopy, single-crystal X-ray diffraction and simultaneous thermal analysis (STA). In molecular structure 1, the cadmium atom coordinates with four sulphur atoms and one nitrogen atom of pyridine, forming a coordination polyhedron [CdS4N], whose geometry is an almost ideal tetragonal pyramidal (C4v). The coordinated py molecule is in the apical position, while two structurally non-equivalent di-iso-butyldithiocarbamate ligands, playing the same terminal S,S′-chelating function, define the basal plane. To characterise additionally the structural state of the cadmium atom in this fivefold coordination, 113Cd chemical shift anisotropy (CSA) parameters, δaniso and η, were calculated from experimental MAS NMR spectra that revealed an almost axially symmetric 113Cd chemical shift tensor. From a combination of TG and DSC measurements taken under an argon atmosphere, we found that the mass of adduct 1 is lost in two steps involving initial desorption of coordinated py molecules with subsequent thermal destruction of liberated cadmium(II) di-iso-butyldithiocarbamate, with yellow-orange, fine-powdered solid CdS as the final product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.