Abstract

We have assessed potential mechanisms associated with the deleterious effects of TBI on the integrity of plasma membranes in the hippocampus, together with consequences for behavioral function. In addition, we have investigated the efficacy of a dietary intervention based on a pyrazole curcumin derivative with demonstrated bioactivity and brain absorption, to re-establish membrane integrity. We report that moderate fluid percussion injury (FPI) increases levels of 4-Hydroxynonenal (HNE), an intermediary for the harmful effects of lipid peroxidation on neurons. A more direct action of FPI on membrane homeostasis was evidenced by a reduction in calcium-independent phospholipase A2 (iPLA 2) important for metabolism of membrane phospholipids such as DHA, and an increase in the fatty acid transport protein (FATP) involved in translocation of long-chain fatty acids across the membrane. A potential association between membrane disruption and neuronal function was suggested by reduced levels of the NR2B subunit of the transmembrane NMDA receptor, in association with changes in iPLA2 and syntaxin-3 (STX-3, involved in the action of membrane DHA on synaptic membrane expansion). In addition, changes in iPLA2, 4-HNE, and STX-3 were proportional to reduced performance in a spatial learning task. In turn, the dietary supplementation with the curcumin derivative counteracted all the effects of FPI, effectively restoring parameters of membrane homeostasis. Results show the potential of the curcumin derivative to promote membrane homeostasis following TBI, which may foster a new line of non-invasive therapeutic treatments for TBI patients by endogenous up-regulation of molecules important for neural repair and plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call