Abstract

AbstractWind power fluctuation significantly impacts the safe and stable operation of the wind farm power grid. As the installed capacity of grid‐connected wind power expands to a certain threshold, these fluctuations can detrimentally affect the wind farm's operations. Consequently, wind power prediction emerges as a critical technology for ensuring safe, stable and efficient wind power generation. To optimize power grid dispatching and enhance wind farm operation and maintenance, precise wind power prediction is essential. In this context, we introduce a joint deep learning model that integrates a compact pyramid structure with a residual attention encoder, aiming to bolster wind farm operational safety and reliability. The model employs a compact pyramid architecture to extract multi‐time scale features from the input sequence, facilitating effective information exchange across different scales and enhancing the capture of long‐term sequence dependencies. To mitigate vanishing gradients, the residual transformer encoder is applied, augmenting the original attention mechanism with a global dot product attention pathway. This approach improves the gradient descent process, making it more accessible without introducing additional hyperparameters. The model's efficacy is validated using a dataset from an actual wind farm in China. Experimental outcomes reveal a notable enhancement in wind power prediction accuracy, thereby contributing to the operational safety of wind farms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.