Abstract

In conventional LLC-based plug-in electric vehicle (PEV) onboard chargers, the battery pack voltage varies in a wide range with the change of state of charge. This makes it difficult to optimally design the pulse frequency modulated LLC resonant converter. Besides, the voltage regulation of the LLC converter is highly dependent on the load conditions. In this paper, a modified pulse width modulated (PWM) LLC type resonant topology (PWM-LLC) is proposed and investigated in PEV charging applications. The switching frequency of the primary LLC network is constant and equal to the resonant frequency. The voltage regulation is achieved by modulating the duty cycle of the secondary side auxiliary mosfet . Compared with the conventional LLC topology, the proposed topology shrinks the magnetic component size and achieves a wide and fixed voltage gain range independent of load conditions. Meanwhile, zero-voltage-switching and zero-current-switching are realized among all MOSFETs and diodes, respectively. A 100-kHz, 1-kW converter prototype, generating 250–420 V output from the 390-V dc link, is designed and tested to verify the proof of concept. The prototype demonstrates 96.7% peak efficiency and robust performance over wide voltage and load ranges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call