Abstract
ABSTRACT We present optical photometry and spectroscopy of the superluminous SN 2002gh from maximum light to +204 d, obtained as part of the Carnegie Type II Supernova (CATS) project. SN 2002gh is among the most luminous discovered supernovae ever, yet it remained unnoticed for nearly two decades. Using Dark Energy Camera archival images we identify the potential supernova (SN) host galaxy as a faint dwarf galaxy, presumably having low metallicity, and in an apparent merging process with other nearby dwarf galaxies. We show that SN 2002gh is among the brightest hydrogen-poor SLSNe with MV = −22.40 ± 0.02, with an estimated peak bolometric luminosity of 2.6 ± 0.1 × 1044 erg s−1. We discount the decay of radioactive nickel as the main SN power mechanism, and assuming that the SN is powered by the spin-down of a magnetar we obtain two alternative solutions. The first case, is characterized by significant magnetar power leakage, and Mej between 0.6 and 3.2 M⊙, Pspin = 3.2 ms, and B = 5 × 1013 G. The second case does not require power leakage, resulting in a huge ejecta mass of about 30 M⊙, a fast spin period of Pspin ∼ 1 ms, and B ∼ 1.6 × 1014 G. We estimate a zero-age main-sequence mass between 14 and 25 M⊙ for the first case and of about 135 M⊙ for the second case. The latter case would place the SN progenitor among the most massive stars observed to explode as an SN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.