Abstract

The ferritin secreted by mammals has been well documented, with the protein capable of localizing to cell membranes and facilitating the delivery of iron to cells through endocytosis. However, the presence of ferritin in the circulatory fluid of mollusks and its functions remain largely unknown. In this study, we aimed to investigate the potential interacting proteins of ferritin in the ark clam (SbFn) through the use of a pull-down assay. Our findings revealed the presence of an insulin-like growth factor type 1 receptor (IGF-1R) in ark clams, which was capable of binding to SbFn and was named SbIGF-1R. SbIGF-1R was found to be composed of two leucine-rich repeat domains (L domain), a cysteine-rich domain, three fibronectin type III domains, a transmembrane domain, and a tyrosine kinase domain. The ectodomain of SbIGF-1R was observed to form a symmetrical antiparallel homodimer in the shape of the letter 'A', with the fibronectin type III domains serving as its 'legs'. The mRNA expression of SbIGF-1R gene was detected ubiquitously in various tissues of the ark clam, with the highest expression levels found in hemocytes, as determined by qRT-PCR. Using a confocal microscopic and yeast two-hybrid assays, the interaction between SbIGF-1R and SbFn was further verified. The results showed that SbFn co-localized with SbIGF-1R on the cell membrane, and their interaction was expected to occur on the FNIII domains of the SbIGF-1R. In conclusion, our findings highlight the identification of a putative receptor, SbIGF-1R, for SbFn, demonstrating the versatility of IGF-1R in ark clams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.