Abstract

In this paper, we present a pushing force mechanism in a magnetic spiral-type machine for use in therapy and diagnosis. Non of the current spiral-type machines can create a pushing force. Thus, their locomotion or tasks are controlled by magnetic field strength and driving frequency. However, the proposed mechanism increases the thrust force on the robot itself in the working space without field controls. The developed pushing force mechanism uses a magnetic suspension structure based on two magnets between the two spiraltype machines. Through this mechanism, the two spiral-type machines act independently via a rotating magnetic field. Thus, the different thrust forces between the two machines create a variation of the magnetic repulsive force in the magnetic suspension. Therefore, the combination of the two thrust forces and the magnetic repulsive force become a total propulsive force. The prototype of the mechanism increased the total thrust force by approximately 3.6 times for locomotion and generated a maximum pushing force of 0.345 N.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.