Abstract

In the minimum-degree minimum spanning tree (MDMST) problem, we are given a graph G , and the goal is to find a minimum spanning tree (MST) T , such that the maximum degree of T is as small as possible. This problem is NP-hard and generalizes the Hamiltonian path problem. We give an algorithm that outputs an MST of degree at most 2 Δ opt ( G ) + o ( Δ opt ( G ) ) , where Δ opt ( G ) denotes the degree of the optimal tree. This result improves on a previous result of Fischer [T. Fischer, Optimizing the degree of minimum weight spanning trees. Technical Report 14853, Dept. of Computer Science, Cornell University, Ithaca, NY, 1993] that finds an MST of degree at most b Δ opt ( G ) + log b n , for any b > 1 . The MDMST problem is a special case of the following problem: given a k -ary hypergraph G = ( V , E ) and weighted matroid M with E as its ground set, find a minimum-cost basis (MCB) T of M such that the degree of T in G is as small as possible. Our algorithm immediately generalizes to this problem, finding an MCB of degree at most k 2 Δ opt ( G , M ) + O ( k k Δ opt ( G , M ) ) . We use the push–relabel framework developed by Goldberg [A. V. Goldberg, A new max-flow algorithm, Technical Report MIT/LCS/TM-291, Massachusetts Institute of Technology, 1985 (Technical Report)] for the maximum-flow problem. To our knowledge, this is the first use of the push–relabel technique in an approximation algorithm for an NP-hard problem. The MDMST problem is closely connected to the bounded-degree minimum spanning tree (BDMST) problem. Given a graph G and degree bound B on its nodes, the BDMST problem is to find a minimum cost spanning tree among the spanning trees with maximum degree B . Previous algorithms for this problem by Könemann and Ravi [J. Könemann, R. Ravi, A matter of degree: Improved approximation algorithms for degree-bounded minimum spanning trees, SIAM Journal on Computing 31(6) (2002) 1783–1793; J. Könemann, R. Ravi, Primal-dual meets local search: Approximating MST’s with nonuniform degree bounds, in: Proceedings of the Thirty-Fifth ACM Symposium on Theory of Computing, 2003, pp. 389–395] and by Chaudhuri et al. [K. Chaudhuri, S. Rao, S. Riesenfeld, K. Talwar, What would Edmonds do? Augmenting paths and witnesses for bounded degree MSTs, in: Proceedings of APPROX/RANDOM, 2005, pp. 26–39] incur a near-logarithmic additive error in the degree. We give the first BDMST algorithm that approximates both the degree and the cost to within a constant factor of the optimum. These results generalize to the case of nonuniform degree bounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.