Abstract

Three enzyme reactions have been reported to catalyze the synthesis of phosphoribosylamine in eukaryotic cells. These activities are glutamine phosphoribosylpyrophosphate (P-Rib-P-P) amidotransferase [amidophosphoribosyl-transferase; 5-phosphoribosylamine: pyrophosphate phosphoribosyltransferase (glutamate-amidating) EC 2.4.2.14], ammonia P-Rib-P-P aminotransferase, and ammonia ribose-5-phosphate aminotransferase. A purine auxotroph derived from a cell line of Chinese hamster fibroblasts was shown to be deficient in catalytic activities of glutamine P-Rib-P-P amidotransferase and ammonia P-Rib-P-P aminotransferase. Extracts from this cell line had normal ammonia ribose-5-phosphate aminotransferase activity. The defect in purine biosynthesis in the mutant cell line was localized to the synthesis of phosphoribosylamine. These results indicate that glutamine P-Rib-P-P amidotransferase or ammonia P-Rib-P-P aminotransferase or both are important for phosphoribosylamine synthesis, but that ammonia ribose-5-phosphate aminotransferase activity probably does not play a significant role in this eukaryotic cell line. The simultaneous disappearance of both P-Rib-P-P-dependent activities suggests these two enzyme activities are closely related structurally or genetically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call