Abstract

This research proposes a low-cost and simple operation microfluidic chip to enhance the magnetic labeling efficiency of two ischemic stroke biomarkers: cellular fibronectin (c-Fn) and matrix metallopeptidase 9 (MMP9). This fully portable and pump-free microfluidic chip is operated based on capillary attractions without any external power source and battery. It uses an integrated cellulose sponge to absorb the samples. At the same time, a magnetic field is aligned to hold the target labeled by the magnetic nanoparticles (MNPs) in the pre-concentrated chamber. By using this approach, the specific targets are labeled from the beginning of the sampling process without preliminary sample purification. The proposed study enhanced the labeling efficiency from 1h to 15min. The dynamic interactions occur in the serpentine channel, while the crescent formation of MNPs in the pre-concentrated chamber, acting as a magnetic filter, improves the biomarker-MNP interaction. The labeling optimization by the proposed device influences the dynamic range by optimizing the MNP ratio to fit the linear range across the clinical cutoff value. The limits of detection (LODs) of 2.8ng/mL and 54.6ng/mL of c-Fn measurement were achieved for undiluted and four times dilutions of MNP, respectively. While for MMP9, the LODs were 11.5ng/mL for undiluted functionalized MNP and 132ng/mL for four times dilutions of functionalized MNP. The results highlight the potential use of this device for clinical sample preparation and specific magnetic target labeling. When combined with a detection system, it could also be used as an integrated component of a point-of-care platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.