Abstract

We experimentally demonstrate that a bulk-structured Bi2Te3 topological-insulator (TI)-based saturable absorber can be used with a dissipative soliton resonance based, nanosecond-pulse fiber laser. Our results show that temporal width-tunable, mode-locked pulses can readily be produced through the dissipative soliton resonance effect from an erbium-doped fiber ring cavity into which a bulk-structured Bi2Te3 TI-deposited, side-polished fiber has been incorporated. The temporal width of the output pulses was changeable from 2.7 to 12.8 ns with an increasing pump power, and the corresponding pulse energy increased linearly from 4.7 to 22.4 nJ. This paper reaffirms that a bulk-structured Bi2Te3 TI can be used as an effective material for saturable absorption, and that the material is readily applicable for different types of mode-locked fiber lasers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call