Abstract

A dysfunctional osteoclast activity is often the cause of bone destructive diseases, such as osteoporosis, periodontitis, erosive arthritis, and cancer. The NFκB ligand (RANKL) has been identified as a major mediator of bone resorption. Agents that suppress RANKL signaling have the potential to inhibit bone resorption or osteoclastogenesis. The present study aimed to determine the effect of a pterostilbene derivative (PTERC-T) for suppressing RANKL or tumor cells-induced osteoclastogenesis in RAW264.7 murine macrophages. Cytotoxicity was measured by MTT assay and inhibitory effect on osteoclastogenesis was analyzed by counting the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and measuring the expression levels of the osteoclast-specific genes. The reactive oxygen species (ROS) generation was detected by FACS. Further, signaling pathways were analyzed by immunofluorescence and immunoblot analyses. PTERC-T suppressed the differentiation of monocytes to osteoclasts in a dose and time-dependent manner. The expression of osteoclast marker genes like TRAP, cathepsin K (CTSK), matrix metalloproteinase 9 (MMP9) and transcription factors c-Fos, and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) were also diminished by PTERC-T. PTERC-T scavenged intracellular ROS generation within osteoclast precursors during RANKL-stimulated osteoclastogenesis. Mechanistically, PTERC-T abrogated the phosphorylation of MAPKs (ERK and JNK) and inhibited RANKL-induced activation of NFκB by suppressing IκBα phosphorylation and preventing NFκB/p65 nuclear translocation. This study thus identifies PTERC-T as an inhibitor of osteoclast formation and provides evidence for its role in preventing osteoporosis and other bone related disorders. However, further studies are needed to establish its efficacy in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call