Abstract

The detection of partial discharge and analysis of SF6 gas components in gas-insulated switchgear (GIS) is important for the diagnosis and operating state assessment of power equipment. The use of a Pt-doped TiO2 nanotube arrays sensor for detecting sulfur hexafluoride (SF6) decomposition products is proposed in this paper. The electrochemical pulse deposition method is employed to prepare the sensor array. The sensor's response to the main characteristic gaseous decomposition products of SF6 is evaluated. The gas sensing characteristic curves of the Pt-doped TiO2 nanotube sensor and intrinsic TiO2 nanotube arrays sensor are compared. The mechanism of the sensitive response is discussed. Test results showed that the Pt-doped nanoparticles not only change the gas sensing selectivity of the TiO2 nanotube arrays sensor with respect to the main characteristic SF6 decomposition products, but also reduce the operating temperature of the sensor.

Highlights

  • The excellent insulating and arc extinguishing properties of sulfur hexafluoride (SF6) gas greatly improve the dielectric strength when used as an insulating medium

  • Many studies have shown that when a gas-insulated switchgear (GIS) insulation error occurs, the energy generated by discharge causes the SF6 gas to decompose and generate SF4, SF3, SF2, and various low-fluorine sulfides

  • We find that the R% response value of the intrinsic and Pt-doped

Read more

Summary

Introduction

The excellent insulating and arc extinguishing properties of sulfur hexafluoride (SF6) gas greatly improve the dielectric strength when used as an insulating medium. The reliability of GIS equipment is very high, its Sensors 2013, 13 inevitable intrinsic defects continue to cause varying degrees of partial discharge (PD). Active gas produced by discharge accelerates insulation aging and corrosion of metal surfaces and may eventually lead to equipment failure. Many studies have shown that when a GIS insulation error occurs, the energy generated by discharge causes the SF6 gas to decompose and generate SF4, SF3, SF2, and various low-fluorine sulfides. These low-fluoride sulfides react with trace moisture and the oxygen present in the SF6 gas and generate SOF4, SOF2, SO2F2, SO2, HF, and other compounds [5,6]. The common methods used at present to detect and analyze SF6 partial discharge decomposition products include gas chromatography and infrared absorption spectrometry, but all these methods are offline laboratory detection methods, and on-site detection with these methods is difficult to implement

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.