Abstract
As an extension of the class of nonlinear PT -symmetric models, we propose a system of sine-Gordon equations, with the PT symmetry represented by balanced gain and loss in them. The equations are coupled by sine-field terms and first-order derivatives. The sinusoidal coupling stems from local interaction between adjacent particles in coupled Frenkel–Kontorova (FK) chains, while the cross-derivative coupling, which was not considered before, is induced by three-particle interactions, provided that the particles in the parallel FK chains move in different directions. Nonlinear modes are then studied in this system. In particular, kink-kink (KK) and kink-anti-kink (KA) complexes are explored by means of analytical and numerical methods. It is predicted analytically and confirmed numerically that the complexes are unstable for one sign of the sinusoidal coupling and stable for another. Stability regions are delineated in the underlying parameter space. Unstable complexes split into free kinks and anti-kinks that may propagate or become quiescent, depending on whether they are subject to gain or loss, respectively.
Highlights
Dual-core waveguides with intrinsic nonlinearity carried by each core offer a convenient setting for the creation of stable dissipative solitons, by application of linear gain to one core and leaving the parallel-coupled mate one lossy
We are interested in solutions for KK and KA complexes interpolating between different flat states, i.e., fixed points (FPs) of Equations (25) and (26), φ0 and ψ0
For the KK complexes, we display the central part of the φ and ψ components and compare them to the perturbative prediction given by Equation (50); for the KA modes, we display both components only in numerical form, as an analytical solution of perturbative Equation (51) is not available
Summary
Dual-core waveguides with intrinsic nonlinearity carried by each core offer a convenient setting for the creation of stable dissipative solitons, by application of linear gain to one core and leaving the parallel-coupled mate one lossy. This possibility was first proposed in the context of nonlinear fiber optics in [1,2]; see a review in [3]. Nonlinear conservative models, including those originating from optics [13,14], give rise to continuous families of soliton solutions, rather than isolated ones
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.