Abstract

Glioblastoma (GBM) is the most aggressive primary malignant brain tumor, with a median survival of approximately 15months. Treatment is limited by the blood-brain barrier (BBB) which restricts the passage of most drugs to the brain. We previously reported the design and synthesis of a BBB-penetrant macrocyclic cell-penetrating peptide conjugate (M13) covalently linked at the axial position of a Pt(IV) cisplatin prodrug. Here we show the Pt(IV)-M13 conjugate releases active cisplatin upon intracellular reduction and effects potent in vitro GBM cell killing. Pt(IV)-M13 significantly increased platinum uptake in an in vitro BBB spheroid model and intravenous administration of Pt(IV)-M13 in GBM tumor-bearing mice led to higher platinum levels in brain tissue and intratumorally compared with cisplatin. Pt(IV)-M13 administration was tolerated in naïve nude mice at higher dosage regimes than cisplatin and significantly extended survival above controls in a murine GBM xenograft model (median survival 33days for Pt(IV)-M13 vs 24days for Pt(IV) prodrug, 22.5days for cisplatin and 22days for control). Increased numbers of γH2AX nuclear foci, biomarkers of DNA damage, were observed in tumors of Pt(IV)-M13-treated mice, consistent with elevated platinum levels. The present work provides the first demonstration that systemic injection of a Pt(IV) complex conjugated to a brain-penetrant macrocyclic peptide can lead to increased platinum levels in the brain and extend survival in mouse GBM models, supporting further development of this approach and the utility of brain-penetrating macrocyclic peptide conjugates for delivering non-BBB penetrant drugs to the central nervous system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call