Abstract
Cisplatin is a widely used chemotherapeutic agent which interacts with DNA to form Pt-DNA adducts, leading to DNA double-strand breaks and apoptosis. Resistance is the major obstacle in the clinical application of cisplatin. A quinoline derivative based Pt(II) complex PtQ was synthesized and characterized. As an analogue of cisplatin, PtQ demonstrated a novel anticancer mechanism in ovarian cancer. PtQ caused excessive production of reactive oxygen species (ROS), which triggered ferroptotic cell death in ovarian cancer. Cystine/glutamate antiporter SLC7A11 and glutathione peroxidase 4 (GPX4) which alleviate lipid peroxidation were both downregulated in PtQ-treated SKOV3 cells. Furthermore, PtQ induced DNA single-strand breaks and suppressed the expression of single-strand breaks repair protein PARP1. Mechanism studies demonstrated that PtQ can hopefully bypass the signaling pathways mediated cisplatin resistance in ovarian cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.