Abstract

Cisplatin is a widely used chemotherapeutic agent which interacts with DNA to form Pt-DNA adducts, leading to DNA double-strand breaks and apoptosis. Resistance is the major obstacle in the clinical application of cisplatin. A quinoline derivative based Pt(II) complex PtQ was synthesized and characterized. As an analogue of cisplatin, PtQ demonstrated a novel anticancer mechanism in ovarian cancer. PtQ caused excessive production of reactive oxygen species (ROS), which triggered ferroptotic cell death in ovarian cancer. Cystine/glutamate antiporter SLC7A11 and glutathione peroxidase 4 (GPX4) which alleviate lipid peroxidation were both downregulated in PtQ-treated SKOV3 cells. Furthermore, PtQ induced DNA single-strand breaks and suppressed the expression of single-strand breaks repair protein PARP1. Mechanism studies demonstrated that PtQ can hopefully bypass the signaling pathways mediated cisplatin resistance in ovarian cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call