Abstract
We examine the role of a common cognitive heuristic in unsupervised learning of Bayesian probability networks from data. Human beings perceive a larger association between causal than diagnostic relationships. This psychological principal can be used to orient the arcs within Bayesian networks by prohibiting the direction that is less predictive. The heuristic increased predictive accuracy by an average of 0.51 % percent, a small amount. It also increased total agreement between different network learning algorithms (Max Spanning Tree, Taboo, EQ, SopLeq, and Taboo Order) by 25 %. Prior to use of the heuristic, the multiple raters Kappa between the algorithms was 0.60 (95 % confidence interval, CI, from 0.53 to 0.67) indicating moderate agreement among the networks learned through different algorithms. After the use of the heuristic, the multiple raters Kappa was 0.85 (95 % CI from 0.78 to 0.92). There was a statistically significant increase in agreement between the five algorithms (alpha < 0.05). These data suggest that the heuristic increased agreement between networks learned through use of different algorithms, without loss of predictive accuracy. Additional research is needed to see if findings persist in other data sets and to explain why a heuristic used by humans could improve construct validity of mathematical algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.