Abstract
In this paper a new method based on the support vector machine (SVM) combined with particle swarm optimization (PSO) is proposed to analyze signals of wound infection detection based on electronic nose (enose). Owing to the strong impact of sensor array optimization and SVM parameters selection on the classification accuracy of SVM, PSO is used to realize a synchronization optimization of sensor array and SVM model parameters. The results show that PSO-SVM method combined with sensor array optimization greatly improves the classification accuracy of mice wound infection compared with radical basis function (RBF) network and genetic algorithms (GA) with/without sensor array optimization. Meanwhile, the proposed sensor array optimization method which weights sensor signals by importance factors also obtain better classification accuracy than that of weighting sensor signals by 0 and 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.