Abstract
The Particle Swarm Optimization (PSO) algorithm has been widely used in the field of optimization mainly due to its easy implementation, robustness, fast convergence, and low computational cost. However, due to its continuous nature, the PSO cannot be applied directly to real-life problems such as hybrid energy generating systems (HEGS) sizing, which contain continuous and discrete decision variables. In this context, the present work proposes the combination of the original version of the PSO with the binary version of the same algorithm (BPSO) for the sizing of HEGS. The transfer function is the main difference between these two algorithms. In this paper, an S-type transfer function is used to map the continuous space into a discrete space. All components of the HEGS are modeled and simulated during the optimization process. The net present value is defined as the unique objective function. The state of charge (SOC) of the batteries is the main constraint. The proposed PSO-BPSO is used for sizing hybrid power generating systems in the Galapagos Islands in Ecuador. Results show that the best configuration for the studied case is a hybrid system with solar panels, batteries, and diesel generators. Configurations that contain only photovoltaic panels and batteries imply a higher cost due to the oversizing of the battery bank. The proposed PSO-BPSO algorithm revealed to be a simple and powerful tool for efficient energy systems sizing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.