Abstract

In this article we suggest a new phenomenological mathematical model for the groundwater transport of colloid particles through porous media which is able to describe some significant effects experimentally observed but not captured within the framework of the classic approach. Our basic idea is to consider both the pure water and the colloid suspension as two thermodynamic phases. Using the network models of porous media, we simulated numerically the transport process at the pore-scale. By averaging the result derived, we have obtained the relative permeabilities for both phases, the percolation threshold for suspension flow, and the effective suspension viscosity. Due to specific laws of colloid particles repartition between various classes of pores, the relative permeability of suspension happens to be a highly nonlinear function of saturation, very far from the diagonal straight line. This determines a difference between the macroscale phase velocities. The suspension velocity is shown to be higher than that of water in major cases, only if the colloid particles are not too large. The suggested model predicts and describes in a closed form the effect of colloid transport facilitation observed experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call