Abstract

Latent class models with crossed subject-specific and test(rater)-specific random effects have been proposed to estimate the diagnostic accuracy (sensitivity and specificity) of a group of binary tests or binary ratings. However, the computation of these models are hindered by their complicated Monte Carlo Expectation–Maximization (MCEM) algorithm. In this article, a class of pseudo-likelihood functions is developed for conducting statistical inference with crossed random-effects latent class models in diagnostic medicine. Theoretically, the maximum pseudo-likelihood estimation is still consistent and has asymptotic normality. Numerically, our results show that not only the pseudo-likelihood approach significantly reduces the computational time, but it has comparable efficiency relative to the MCEM algorithm. In addition, dimension-wise likelihood, one of the proposed pseudo-likelihoods, demonstrates its superior performance in estimating sensitivity and specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.