Abstract

A three-node, C 0-type, layered flat-shell finite element is developed for the analysis of large elastic-plastic deformations in plate and shell structures. The system equations are derived by using virtual work principle and the updated Lagrangian formulation. Material is assumed to be isotropic and rate insensitive obeying J 2-flow rule. The displacement field assumption of the MIN3 plate bending element is employed. A layered structure is used to model through-the-thickness distribution of elastic and plastic zones. The finite element results for three nonlinear plate bending problems are compared with experimental results to verify the accuracy of the formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.